
NECTARFY
The Smart Beehive
December 21, 2021

2

Abstract
The Nectarfy, a smart beehive which can record relevant data related to the health of the

beehive and send a metric of how healthy the hive is to beekeepers. The hive will then be

able to use the metrics it records to give advice to beekeepers on how to best treat the

situation the hive is currently experiencing, which includes heat and weight variations.

The hive will be able to assist in the beekeeping process, elevating the quality of life for

beekeepers, and assist novice beekeepers in learning the craft. The beehive is able to

operate both autonomously and with computer control.

The key features of the hardware are a load cell base, which can either replace existing

bottom boards of beehives, or support the bottom board of the beehive itself. A beehive

frame within the beehive was retrofitted to include the sensor electronics which were

required to identify the situation within the beehive. On the outside, an arm mounted with

an LED and servo arm was attached to give a physical notification to beekeepers when

the hive reaches harvesting capacity. The software developed was a Windows Form and

C# which is able to collect the data read, save them to a local file, and give curated

instructions and advice on what actions to take based on the status of the hive itself.

Objective
1. Vision: The overall vision for this project is to create a ‘Smart Beehive’, which can record

relevant data related to the health of the beehive and send a metric of how healthy the

hive is to beekeepers or owners.

1. What we will design: In terms of mechanical design, we will design components around

a “Deep Super”-sized beehive box, from BC Bee Beekeeping Supplies. These components

include a servo/LED system which gives a visual indication of when the hive is at a

harvestable weight, a mounting interface for a load cell, and an enclosure to protect

other essential electronic components. The MSP430FR5739 board will be used for

tracking relevant variables (temperature, weight, acceleration) and to handle

communication with the beekeeper, by forwarding packets of data using UART to an

accompanying C# program as the Smart Beehive’s user interface.

3

2. Final Product:

Figure 1: Default State of Beehive

Figure 2: Alert State of Beehive

4

Figure 3:Top Left: Servo Attachment. Top Right: Instrumentation Frame. Bottom: Location of Instrumentation Frame

5

Figure 4: Windows Form GUI

We were able to accomplish almost all the goals we set out to do, including autonomous

operation, which was a stretch goal. Ultimately, we were unable to send wireless messages from

the hive to the user, which was one of the other stretch goals.

Rationale
Technology in the beekeeping industry has not had any major advancements in the past 150

years. We believe that technological advancements will not only improve colony health, but also

combat the overall decline of beekeeping as a practice. We aim to solve certain issues revolving

around beekeeping, with our implementation of an “smart beehive” aimed at urban beekeeping,

which has seen growth in the last decade. Urban beekeeping allows non-professionals to

6

beekeep effectively without needing the resources of a dedicated apiary. We feel that our

contribution through this project would be impactful to this industry as a whole, as we can

provide a health benefit to the bees and improve the efficiency of existing beekeeping practices.

Often, these novice beekeepers are not educated or trained well enough to ensure their colonies

will survive. Without adequate help, many colonies have reported total colony death within two

years. The product we are creating aims to lessen the risk for novice beekeepers and assist

them in creating thriving colonies, while also helping veteran beekeepers save time and effort

when tending to their hives. It is different from similar work at UBC as there has currently been

no effort at UBC to develop smart hives which we are aware of. There are existing solutions

already existing in the market with sensor arrays and other data metric systems, but ours is

unique in that it is able to operate fully autonomously on much lower power, none of the existing

solutions have a physical attachment which shows the status of the hive (servo flag and LED),

and the existing solutions are far more expensive than the solution we are able to develop.

List of Functional Requirements

Functional Requirements % Effort Responsible Person

The device will track the
ambient temperature of the
beehive frame, and record the
data in a user-friendly format.

10% Thomas

The device will track the
overall weight of the beehive
frame, and record the data in
a user-friendly format.

50% Thomas & Joseph

The device will send a
mechanical signal when the
beehive is at an acceptable
harvesting weight.

15% Thomas

The device will detect when
the beehive experiences an
excess amount of movement.

15% Joseph

7

The device will house
electronics to keep it secure
from the external
environment.

10% Joseph

Functional Requirement 1: The device will track the ambient temperature of the beehive
frame, and record the data in a user-friendly format

○ Approach and Design

i. The functional requirement is meant to track the ambient temperature of

the beehive. This is because the temperature within hives needs to be

regulated to keep bees healthy. Typical ways to assist with the heating are

currently to wrap the hive with insulation to help bees be more efficient

with natural heating.

The MSP430 board’s built-in temperature sensor will be used to do this,

but additional attachments may be required in order to increase the

sensitivity of the sensor. Refer to Appendix A for high level pseudocode of

the relevant MSP430 and C# programs.

8

Figure 5: Temperature Sensor Location

○ Inputs and Outputs

i. The inputs for this FR will be an analog signal which comes from the

temperature sensor on the board itself. The temperature within a beehive

needs to generally be kept at around 35 degrees Celsius. The temperature

range over an entire year for 2021 in British Columbia was between -6 to

32.4 degrees Celsius.

ii. The output for this FR is a user-readable temperature value in degrees

Celsius. The analog data input will be sent to a computer through UART

(in the format of a serial message packet, similar to Lab 2), parsed by an

accompanying C# program, converted to degrees Celsius, and presented

to the user in the form of a CSV file.

○ Parameters

i. The software parameters are the calibration values used to translate the

analog signal received from the MSP430 board into degrees Celsius.

9

Assuming a linear calibration curve, the slope and offset are relevant

parameters. The tuning of these parameters affect the accuracy of the

output. To optimize them, a soldering iron and the outdoor environment

was used to manually calibrate the sensor, by mapping known

temperatures to analog values, and an end-points-based linear curve was

derived.

○ Development Plan

i. Use relevant information from Lab 2 to enable the MSP430 temperature

sensor and send outgoing temperature readings through UART

ii. Use relevant information from Lab 1 and 2 to create an accompanying C#

program which receives, converts and saves analog temperature readings

into a CSV file

iii. Physically mount the MSP430 board to the beehive housing

○ Test Plan

i. Use the MECH423 Serial Communicator to check if the values are being

transmitted through UART and are sensitive to temperature changes

ii. Use an external temperature sensor to record the ambient outdoor

temperature and record the associated analog values read from the

MSP430, and use a soldering iron to slowly increase the temperature to

gather more analog data points for tuning the calibration curve (within

~2-5 deg Celsius)

iii.

10

iv. After the board is physically mounted, place the beehive and external

temperature sensor outside to confirm that the temperature sensor is

returning accurate temperature data (within ~2-5 deg Celsius), and that

physical movement of the beehive does not displace/break the MSP430

mount. This test was performed by carrying the hive outside given the

winter conditions, and doing so showed that the sensor array was

undisturbed.

Functional Requirement 2: The device will track the overall weight of the beehive frame,
and record the data in a user-friendly format.

○ Approach and Design

i. The objective of this functional requirement is to return a weight (in kg)

from the beehive frame. This is to track the amount of honey being

accumulated in the beehive as time goes on. A load cell will be attached

to the mechanical design and will be connected to the MSP430 board,

which receives the load cell data. An accompanying C# program will be

developed to interpret and save the load cell data into a user-friendly

format. Refer to Appendix A for high level pseudocode of the relevant

MSP430 and C# programs.

11

Figure 6: Weight Detection SystemDesign

Figure 7: HIgh Level Circuit Diagram for Load Cell

12

○ Inputs and Outputs

i. The input for this FR is the voltage output of a load cell, corresponding to

the weight of the beehive box. Our load cell is expected to handle up to 90

pounds, which is the typical weight of a “Deep Super” beehive box, the box

we will be using. Therefore, we will use a 114990100 load cell from Seeed

Technology Co, which has a range of 0-50kg.

ii. The output of this FR is load cell data, presented to the user in the form of

a CSV file. The load cell voltage from the MSP430 will be sent to a

computer through UART (in the format of a serial message packet, similar

to Lab 2), and converted into kg. While the exact transfer function from

the load cell data to kg cannot be determined at the current proposal

stage, we will manually calibrate the sensor using end-points-linearity

calibration, using known masses to determine the range.

○ Parameters

i. The hardware parameters involve the weight range of the load cell. As

mentioned above, we are using a “Deep Super”-sized beehive box, which

supports up to 90 pounds. Our chosen load cell will be the 114990100

load cell from Seeed Technology Co, which has a range of 0-50kg.

ii. The software parameters are the calibration values used to translate the

load cell signals sent to an accompanying C# program into kg. Assuming

a linear calibration curve, the slope and offset are relevant parameters.

The tuning of these parameters affect the accuracy of the output. To

optimize them, weights of known masses were used to manually calibrate

the load cell and an end-points-based linear curve was derived. The

weights supplied from the instrumentation lab were used.

13

○

○ Development Plan

i. Assemble the circuit and verify the feasibility of the load cell passing data

to the MSP430 board, to an accompanying C# program using UART

ii. Use relevant information from Lab 1 to program a C# interface that

translates and stores the load cell data into a CSV file

iii. Calibrate the load cell to accurately display the weight in kg

○ Test Plan

i. Use the MECH423 Serial Communicator to check if the MSP430 is

receiving data from the load cell and sending it forward through UART,

and that the values change when more/less weight is added to the load

cell.

1.

14

ii. Open and graph the CSV data saved by the C# program to check if the

load cell data is being recorded properly over time

1.

iii. Compare the converted CSV values (after calibration) to the known values

added to the load cell, check that the data is accurate to within ~3 kg

(accuracy limit determined as a safety factor of 2 for the combined error

of the load cell, from the datasheet). These were done and tested by

using the weights available in the Mech 423 laboratory.

Functional Requirement 3: The device will send a mechanical signal when the beehive
is at an acceptable harvesting weight.

○ Approach and Design

i. The objective of this functional requirement is to allow the MSP430 board

to report back when the beehive has reacted critical capacity. The hive

will be modified to have a small motorized flag with an LED attachment. A

bright LED will be attached to the end of an actuating arm, which will be

attached to a servo allowing the arm to move up and down, similar to a

mailbox flag. Once the hive is full, the flag will be raised, and it will also

have a blinking LED on the end along with a bright color to maximize

visibility in various weather and lighting conditions. Refer to Appendix A

for the code of the relevant MSP430 and C# programs.

15

Figure 8: Mechanical Alert System with Flag

Figure 9: High Level Circuit Diagram for LED and Flag

16

○ Inputs and Outputs

i. The hardware-related input for this FR is the raw load cell voltage output

sent to the MSP430. Further detail can be found in Functional

Requirement 2.

ii. The software-related input for this FR is a serial message packet sent

from the accompanying C# program back to the MSP430 board. After

conversion to kg, there is an adjustable threshold limit for ‘acceptable

harvesting weight’ in kg, and when the C# program receives a converted

load cell value above that limit, it will send a serial message packet

(similar to the packet used in Lab 2 with a start byte and command byte,

etc) to the MSP430 board to initiate moving the servo motor and turning

on the LED. Refer to Figure 8 for the circuit diagram.

iii. The outputs for this FR are movement of an SG90 servo motor and a

visible light from the LED. These visual indicators will be presented to the

user to show that the beehive is ready for harvest. Refer to Figures 1 and

2 for a preliminary design of these visual indicators.

○ Parameters

i. The only software parameter to be adjusted is the threshold weight value

for the C# program to send a signal to the MSP430 board, which is a

user-specified parameter (implemented as a TextBox in the C# program).

Other relevant parameters are already outlined in Functional Requirement

2, involving the calibration values for the load cell.

○ Development Plan

i. Assemble the connections from the MSP430 board to the servo motor

and LED according to Figure 8 Circuit Diagram

ii. Complete development of Functional Requirement 2 to ensure that the

weight values are calibrated accurately

iii. Program software functionality (for C# program and firmware on the

MSP430 board) to detect when weight threshold has been passed, then

send/receive serial message packets and convert them to servo

motor/LED changes

○ Test Plan

17

i. Verify that the MSP430 board can control the servo motor and LED

with a simple ‘LED blink’ and ‘servo sweep’ program. Both of these were

completed and validated to be functional. See video.

ii. Test for weight calibration outlined in Functional Requirement 2

iii. Verify that the LED turns on and the servo motor moves when specified

weight threshold is passed, and moves back when weight goes back

below the threshold. This was found to be functional. See video.

These tests can be found to be function at around 00min 45 seconds in

the video.

Functional Requirement 4: The device will detect when the beehive experiences an
excess amount of movement.

○ Approach and Design

i. The objective of this FR is to send a signal from the MSP430 board to the

C# program when the beehive frame experiences movement. The only

hardware necessary is the accelerometer present on the MSP430 board,

and an accompanying C# program to interpret the signal when the board

experiences a sudden acceleration. Refer to Appendix A for the code of

the relevant MSP430 and C# programs.

18

Figure 10: Accelerometer Location

○ Inputs and Outputs

i. The input for this FR is the physical movement of the MSP430 board,

outputted as a voltage output from the MSP430’s accelerometer. The

accelerometer will detect the sudden movement and send a signal (in the

format of a serial message packet, similar to Lab 2) to a C# program if an

accelerometer threshold value is reached.

ii. The C# program will receive the movement packet from the MSP430 and

visually output a flashing warning sign on the screen for the user to see.

This simulates an ‘alarm system’ as if an intruder is attempting to steal

the beehive.

○ Parameters

i. The parameters for this FR rely on the ‘zero’ orientation of the MSP430

board when mounted to the beehive. Once the MSP430 is mounted, the

stationary values in x, y, and z are recorded as the ‘zero’ position. Another

parameter for changes in x, y, z data is recorded. This threshold will

determine whether the movement is sensitive enough to trigger a pop-up

on the C# interface, which will be calibrated appropriately once the

prototype is created. The zero values were found to be:

1. X: 125

19

2. Y: 153

3. Z: 130

○ Development Plan

i. Use relevant information from Lab 1 and 2 to program the MSP430 board

to send raw accelerometer data to a C# program, and have the C#

program send a flashing image once the accelerometer value passes

some threshold (change from its zero position)

ii. Physically mount the MSP430 board to the beehive, pick up the beehive to

calibrate threshold value appropriately

○ Test Plan

i. Test if the C# program will show a flashing image once the MSP430

board is moved around over some threshold (similar to Lab 1 gesture

recognition)

ii. Test if moving the beehive (with a mounted MSP430 board) will trigger

the flashing image on the C# program

Both these tests were found to be functional, see video at 0 min 33

seconds.

Functional Requirement 5: The device will house electronics to keep it secure from the
external environment.

○ Approach and Design

i. This FR outlines the mechanical structure of the design, that attaches to

the beehive frame and secures the electronics.

20

Figure 11: Enclosure Design for Various Parts

○ Inputs and Outputs

21

i. There are no inputs for this FR, because there are no associated

hardware or software modules involved. This FR only encompasses the

physical design, to be done in SolidWorks and 3D-printed.

○ Parameters

i. The only parameters to adjust for the electronics enclosure involve the

dimensions of the enclosure itself. The enclosures were made separately

for each piece to reduce interference as much as possible. The servo

enclosure had to be designed so it would be able to hook around the hive

as well as maintain enough room for the top lid.

○ Development Plan

i. Design a preliminary enclosure based on approximate dimensions of the

components inside it, using SolidWorks.

ii. 3D print the enclosure as a prototype to fit the components, and

determine if the dimensions need to be adjusted.

iii. 3D print the adjusted enclosure and mount it to the beehive frame.

○ Test Plan

i. Verify that 3D representations of enclosed components fit inside the

enclosure.

ii. Verify that the actual components fit inside the prototype enclosure.

iii. Verify that the enclosure is mounted properly, and does not fall off when

the beehive box is in motion.

These tests were all passed, as can be evidently seen from the final

design being able to hold all components.

System Evaluation
The following tests were performed to test the functionality of the complete system:

Experiment 1:

- Use the MECH423 Serial Communicator to check if the MSP430 is receiving any form of

data from the load cell and sending it forward through UART, and that the values change

when more/less weight is added to the load cell. This is the crux of one of the functional

22

requirements and was found to be working. We used various weights of known sizes

and checked to see if the load cell was able to determine their weights with minimal

error.

Experiment 2:

- Open and graph the CSV data saved by the C# program to check if the load cell data is

being recorded properly over time. This is to confirm that we can have data flow from the

load cell to the MSP430 board to the C# program used to save the data.

-

Experiment 3:

- Compare the converted CSV values (after calibration) to the known values added to the

load cell, ensuring the threshold would consistently trigger at a chosen point. This was

done and demonstrated during Demo Day. The threshold then was exactly two jars of

Kirkland Honey, which was about 600 grams. During the demo, the hive was consistently

able to perform at this weight, albeit one which is relatively light.

Experiment 4:

- Ensure various system triggers are activated. First, see if the servo will trigger when the

load cell reaches a limit value chosen by the user. Check if the temperature triggers for

hot and cold temperatures. Check if the accelerometer triggers when beyond a threshold

based on 0 value.

23

These were tested and found to work. See the video for all of the results. A hairdryer

was used to test the temperature NTC was functional on the board, which was then used to

show the results of the temperature sensor working in the video.

Reflections
1. Most of the project was very functional, and there were relatively few hiccups in the

process. The servo and sensor information went well, and generally the mechanical

design was also straightforward. One of the things which didn’t initially work was getting

the load cell to function as intended. We initially started off using the HX711 Load Cell

amplifier, which had a built-in ADC and a two-wire interface to read the data off it directly.

Unfortunately, we realized that the library was made for Arduino only, and we had trouble

getting Energia (a software used to translate Arduino code to MSP boards) to compile

and upload the code to our MSP430 board. To get around this issue, we first attempted

to reverse-engineer the Arduino library, which ended up unsuccessful due to not being

able to recreate specific clock timings of the module interface. We then opted to build a

protoboard with an INA122PA Instrumentation Amplifier to manually amplify the data

and read it using the MSP430’s ADC. This option ended up working fine for our use case.

There were some balancing issues with regards to the load cell and the mechanical

design of the actual weight detection system. If done again, two load cells would be

used instead of one, and the enclosure and mechanical setup for the load cell would be

designed and made out of a tougher material than wood. There was some plastic

deformation of the wood which was used to support the load cell itself, which could be

improved on in future versions. Furthermore, we would like to reach all our stretch goals,

including exporting information wirelessly so the beehive can perform even better as an

autonomous unit.

2. The first most useful thing would be learning to read datasheets and understand how to

write firmware codes based on those datasheets. Given that this project used amplifier

modules and other hardware which were not extensively studied in MECH 423, the ability

for us to read the datasheet from the company and understand how to work with the

device was very valuable in our project.

24

The second most useful thing would be learning about timers and their use in

providing PWM signals to devices. This understanding of how the chip interacts with the

world through the use of timers and voltages was very helpful in the sensory array which

we employed for the project, but also the motors and data transmissions as well. These

were used extensively to tune the servo motor’s functionality, as well as working to

ensure a robust communication between all of the sensor’s incoming data and

packaging them into relevant packets for the computer to interpret.

The third most useful thing would be how to control a microcontroller with the firmware

itself. Given that the majority of this project relied on the MSP430 board as a controller

for all of its main functions, being able to actually code the processor’s behavior to how

we desired. This allowed us to build the project to our desired traits and specifications.

3. The limits of our knowledge as Mechatronics engineers are based around our familiarity

with various sensors and the MSP430 board itself. While we are still students, there are

far more sensors and a large variety of actuators we have yet to truly use and implement.

We are also relatively unfamiliar with control systems being applied to these smaller

types of systems. We wanted to have a self-heating element within the beehive to assist

with temperature variations, but due to the lack of knowledge we had implementing

control systems by using the MSP board, we were unable to do so.

Three things we would like to learn going forward:

1. Machine Learning/Computer Vision

a. Our strategy to acquire knowledge in these areas would include taking

courses such as MANU 465, which teach the concepts of machine

learning and computer vision. Moreover, integrating computer vision into

capstone or other course projects would help facilitate our learning within

these subjects. Finally, doing projects on our own through online

resources would certainly help build experience in these areas.

2. Control Theory

a. Our strategy to acquire more knowledge in these areas would include

taking courses such as MECH 468, Modern Control Theory, to get a better

25

understanding of control systems in a theoretical sense.

Unfortunately, there are not many ways to get hands-on controls

experience, but looking forward in our coursework, MECH 421 appears to

present a unique opportunity to allow us to apply controls further with

sensors and other actuators we have been learning about in our courses

thus far. There could even be opportunities to work in labs throughout

higher education which focus on applying the theories learned to practical

problems. Moreover, taking on personal projects or guided projects on our

own time would be another way to acquire knowledge.

3. Data communication protocols

a. One of the most important parts of a mechatronic system is to

communicate data between various devices through various interfaces.

While we were able to do this partly using the UART in class, we would like

to seek more ways to do it through bluetooth, or even IOT. One of the

ways we can go about doing this is through self-directed learning courses

such as IOT and Smart Devices courses on Coursera. Moreover, we could

use resources such as instructables to help develop our skills in this area

by using a hands-on approach to the problem.

Appendix A

C# GUI Code

using System;

using System.Collections.Concurrent;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.IO;

using System.IO.Ports;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Forms;

using System.Windows.Forms.DataVisualization.Charting;

26

namespace SmartBeeHiveInterface

{

public partial class Form1 : Form

{

//Collect UART data

ConcurrentQueue<Int32> databyte = new ConcurrentQueue<Int32>();

int counter = 0; //Counts the number of packets

int is255 = 0; //Switch Case conditional controller

//Queues for data

ConcurrentQueue<Int32> xval = new ConcurrentQueue<Int32>();

ConcurrentQueue<Int32> yval = new ConcurrentQueue<Int32>();

ConcurrentQueue<Int32> zval = new ConcurrentQueue<Int32>();

ConcurrentQueue<Int32> tempval = new ConcurrentQueue<Int32>();

ConcurrentQueue<Int32> weightval = new ConcurrentQueue<Int32>();

//Vars for data

double weightzero = 0;

int avgsamplerate = 10;

int critmass = 30; //Critical harvesting mass

double wcalib = 0.375; //Calib value for weight

int tcalib = 2; //Calib value for temp

int xoperating = 125; // operating x-orientation

int yoperating = 153; // operating y-orientation

int zoperating = 130; // operating z-orientation

int xyz_diff_threshold = 15; // difference between actual x/y/z-avg

and x/y/z-operating

double tempscale = -1.1845; // calibrated temperature conversion

value

int tempoffset = 139; // calibrated temperature conversion value //

139

int temp_hot_threshold = 50;

int temp_cold_threshold = 0;

int x = 0;

int weightavg = 0;

int tempavg = 0;

int xavg = 0;

int yavg = 0;

int zavg = 0;

bool hive_hot = false;

27

bool hive_cold = false;

bool hive_tipped = false;

bool hive_full = false;

bool symbols_visible = false;

// ----- SERIES FOR DATA PLOTTING -----

Series weightdata = new Series();

Series tempdata = new Series();

// ----- FOR WRITINNG TO CSV -----

string path = @"C:\Users\jcast\Desktop\values.csv";

string delim = ",";

StringBuilder csvout = new StringBuilder();

public Form1()

{

InitializeComponent();

}

private void DataReceivedHandler(object sender,

SerialDataReceivedEventArgs e)

{

int bytesToRead = serialPort1.BytesToRead;

while (bytesToRead != 0)

{

int newByte = serialPort1.ReadByte();

databyte.Enqueue(newByte);

bytesToRead = serialPort1.BytesToRead;

}

}

private void Form1_Load(object sender, EventArgs e)

{

serialPort1.PortName = "COM3";

serialPort1.DataReceived += new

SerialDataReceivedEventHandler(DataReceivedHandler);

timer1.Tick += new EventHandler(timer1_tick);

timer1.Interval = 1000;

timer1.Enabled = true;

timer1_tick(null, null);

28

timer2.Tick += new EventHandler(timer2_Tick);

timer2.Interval = 1000;

timer2.Enabled = true;

flashingSymbolTimer.Interval = 500;

flashingSymbolTimer.Enabled = true;

//Weight Chart Init

WeightChart.Series.Add(weightdata);

weightdata.Name = "Weight Data";

weightdata.ChartType = SeriesChartType.Point;

weightdata.BorderWidth = 2;

weightdata.Color = Color.Purple;

weightdata.XValueType = ChartValueType.Double;

weightdata.YValueType = ChartValueType.Double;

//Temp Chart Init

TempChart.Series.Add(tempdata);

tempdata.Name = "Temperature Data";

tempdata.ChartType = SeriesChartType.Point;

tempdata.BorderWidth = 2;

tempdata.Color = Color.Green;

tempdata.XValueType = ChartValueType.Double;

tempdata.YValueType = ChartValueType.Double;

// start with hive warnings hidden

statlabel.Visible = false;

temphivestat.Visible = false;

orientationstat.Visible = false;

tempUpdatedLabel.Visible = false;

// start with symbols hidden

honeyPicBox.Visible = false;

hotPicBox.Visible = false;

coldPicBox.Visible = false;

oriPicBox.Visible = false;

}

private void timer1_tick(object sender, EventArgs e)

{

if (serialPort1.IsOpen)

29

{

while (databyte.TryDequeue(out int valfromq))

{

// state machine

switch (is255)

{

case 0:

if (valfromq == 255) { is255 = 1; }

break;

case 1:

EnqueueWithQueueLimit(xval, valfromq);

if (xval.Count == avgsamplerate) xavg =

AverageIntFromQueue(xval);

is255 = 2;

break;

case 2:

EnqueueWithQueueLimit(yval, valfromq);

if (yval.Count == avgsamplerate) yavg =

AverageIntFromQueue(yval);

is255 = 3;

break;

case 3:

EnqueueWithQueueLimit(zval, valfromq);

if (zval.Count == avgsamplerate) zavg =

AverageIntFromQueue(zval);

is255 = 4;

break;

case 4:

EnqueueWithQueueLimit(tempval, valfromq);

if (tempval.Count == avgsamplerate) tempavg =

AverageIntFromQueue(tempval);

is255 = 5;

break;

case 5:

EnqueueWithQueueLimit(weightval, valfromq);

if (weightval.Count == avgsamplerate) weightavg

= AverageIntFromQueue(weightval);

is255 = 0;

counter++; // increments here, so 1 counter

increment == 1 full packet

30

break;

}

}

}

}

private void plotter(double weight, int temp)

{

//Store values into CSV

csvout.AppendLine(weight.ToString() + delim + temp.ToString());

File.AppendAllText(path, csvout.ToString());

// only plot 100 datapoints

if (weightdata.Points.Count() > 100)

weightdata.Points.RemoveAt(0);

if (tempdata.Points.Count() > 100) tempdata.Points.RemoveAt(0);

// actual plotting

weightdata.Points.AddXY(x, weight);

tempdata.Points.AddXY(x, temp);

WeightChart.ResetAutoValues();

TempChart.ResetAutoValues();

x++;

}

private void ConBut_MouseClick(object sender, MouseEventArgs e)

{

if (!serialPort1.IsOpen)

{

serialPort1.Open();

ConBut.Text = "Beehive Connected";

}

else

{

serialPort1.Close();

ConBut.Text = "Connect Beehive";

}

}

31

private void ZeroBut_MouseClick(object sender, MouseEventArgs e)

{

weightzero = weightavg * wcalib;

}

private void timer2_Tick(object sender, EventArgs e)

{

if (!serialPort1.IsOpen) return;

double convertedweight = weightavg * wcalib - weightzero;

int convertedtemp = (int)((tempavg - tempoffset) / tempscale);

string sugtextboxbuffer = String.Empty;

// WEIGHT

weightlabel.Text = convertedweight.ToString() + " KG";

if (weightavg > 55)

{

statlabel.Text = "HIVE FULL";

statlabel.Visible = true;

sugtextboxbuffer += "Harvest suggested, possible invasion

occurring\r\n\r\n";

hive_full = true;

}

else

{

statlabel.Visible = false;

hive_full = false;

}

// TEMPERATURE

templabel.Text = convertedtemp.ToString() + " C";

if (convertedtemp > temp_hot_threshold)

{

temphivestat.Text = "HIVE TOO HOT";

temphivestat.Visible = true;

sugtextboxbuffer += "Move box to shade or increase

ventillation. Possible swarming my be occuring, keep an ear out!\r\n\r\n";

hive_hot = true;

hive_cold = false;

32

}

else if (convertedtemp < temp_cold_threshold)

{

temphivestat.Text = "HIVE TOO COLD";

temphivestat.Visible = true;

sugtextboxbuffer += "Wrap hive with insulation\r\n\r\n";

hive_cold = true;

hive_hot = false;

}

else

{

temphivestat.Visible = false;

hive_hot = false;

hive_cold = false;

}

// ORIENTATION

if ((Math.Abs(xavg - xoperating) > xyz_diff_threshold) ||

(Math.Abs(yavg - yoperating) > xyz_diff_threshold) ||

(Math.Abs(zavg - zoperating) > xyz_diff_threshold))

{

orientationstat.Text = "HIVE MOVEMENT DETECTED";

orientationstat.Visible = true;

sugtextboxbuffer += "Hive has experienced high amounts of

shock, check if animals have distrubed your hive, or if the hive is still

there\r\n\r\n";

hive_tipped = true;

}

else

{

orientationstat.Visible = false;

hive_tipped = false;

}

sugtextbox.Text = sugtextboxbuffer; // updated sugtextbox all

at once

plotter(convertedweight, convertedtemp);

}

33

private void EnqueueWithQueueLimit(ConcurrentQueue<Int32> _q, int

val)

{

int queue_limit = avgsamplerate;

_q.Enqueue(val);

while (_q.Count > queue_limit)

{

_q.TryDequeue(out _); // dequeue if there are more elements

than the queue limit

}

}

private int AverageIntFromQueue(ConcurrentQueue<Int32> _q)

{

int sum = 0;

int temp;

int queue_count = _q.Count;

while (_q.TryDequeue(out temp))

{

sum += temp;

}

int avg = (int)((double)sum / queue_count);

return avg;

}

private void tempColdButton_MouseClick(object sender,

MouseEventArgs e)

{

if (Int32.TryParse(tempBox.Text, out int new_cold_temp))

{

temp_cold_threshold = new_cold_temp;

tempBox.Text = "";

tempUpdatedLabel.Text = "Cold threshold updated to " +

new_cold_temp.ToString() + " C.";

tempUpdatedLabel.Visible = true;

}

34

else

{

tempUpdatedLabel.Text = "Invalid input for setting new cold

threshold.";

tempUpdatedLabel.Visible = true;

}

}

private void tempHotButton_MouseClick(object sender, MouseEventArgs

e)

{

if (Int32.TryParse(tempBox.Text, out int new_hot_temp))

{

temp_hot_threshold = new_hot_temp;

tempBox.Text = "";

tempUpdatedLabel.Text = "Hot threshold updated to " +

new_hot_temp.ToString() + " C.";

tempUpdatedLabel.Visible = true;

}

else

{

tempUpdatedLabel.Text = "Invalid input for setting new hot

threshold.";

tempUpdatedLabel.Visible = true;

}

}

private void flashingSymbolTimer_Tick(object sender, EventArgs e)

{

if (symbols_visible)

{

hotPicBox.Visible = false;

coldPicBox.Visible = false;

honeyPicBox.Visible = false;

oriPicBox.Visible = false;

symbols_visible = false;

}

else

{

if (hive_hot) hotPicBox.Visible = true;

35

if (hive_cold) coldPicBox.Visible = true;

if (hive_full) honeyPicBox.Visible = true;

if (hive_tipped) oriPicBox.Visible = true;

symbols_visible = true;

}

}

}

}

MSP430 C Code

#include <msp430.h>

#include <stdio.h>

/**

* main.c

*/

void configureCS(void);

void configureUART(void);

void configureTimer(void);

void configureMiscPins(void);

void enableInterrupts(void);

void configureSwitch(void);

void powerADC(void);

void configureADC(void);

volatile unsigned accelX;

volatile unsigned accelY;

volatile unsigned accelZ;

volatile unsigned loadCellReading;

unsigned int ADC_Result;

const unsigned int offset = 85;

int i=0;

int main(void)

{

WDTCTL = WDTPW | WDTHOLD; // stop watchdog timer

configureCS();

configureUART();

36

configureSwitch();

powerADC();

configureADC();

configureTimer();

configureMiscPins();

enableInterrupts();

while(1) {

}

}

void sample_ADC_accel(void)

{

// sample A12

ADC10CTL0 &= ~(ADC10ENC + ADC10SC); // disable and stop

conversion to change channel

ADC10MCTL0 = ADC10INCH_12; // change input channel to

A12

ADC10CTL0 |= ADC10ENC + ADC10SC; // enable and start

conversion

while (ADC10CTL1 & ADC10BUSY); // wait for conversion to

finish

ADC10CTL0 &= ~ADC10SC; // stop conversion

accelX = ADC10MEM0 >> 2;

// sample A13

ADC10CTL0 &= ~(ADC10ENC + ADC10SC); // disable and stop

conversion to change channel

ADC10MCTL0 = ADC10INCH_13; // change input channel to

A13

ADC10CTL0 |= ADC10ENC + ADC10SC; // enable and start

conversion

while (ADC10CTL1 & ADC10BUSY); // wait for conversion to

finish

ADC10CTL0 &= ~ADC10SC; // stop conversion

accelY = ADC10MEM0 >> 2;

// sample A14

ADC10CTL0 &= ~(ADC10ENC + ADC10SC); // disable and stop

conversion to change channel

37

ADC10MCTL0 = ADC10INCH_14; // change input channel to

A14

ADC10CTL0 |= ADC10ENC + ADC10SC; // enable and start

conversion

while (ADC10CTL1 & ADC10BUSY); // wait for conversion to

finish

ADC10CTL0 &= ~ADC10SC; // stop conversion

accelZ = ADC10MEM0 >> 2;

// sample A4

ADC10CTL0 &= ~(ADC10ENC + ADC10SC); // disable and stop

conversion to change channel

ADC10MCTL0 = ADC10INCH_4; // change input channel to A4

ADC10CTL0 |= ADC10ENC + ADC10SC; // enable and start

conversion

while (ADC10CTL1 & ADC10BUSY); // wait for conversion to

finish

ADC10CTL0 &= ~ADC10SC; // stop conversion

ADC_Result = ADC10MEM0 >> 1;

// sample A0

ADC10CTL0 &= ~(ADC10ENC + ADC10SC); // disable and stop

conversion to change channel

ADC10MCTL0 = ADC10INCH_0; // change input channel to A0

ADC10CTL0 |= ADC10ENC + ADC10SC; // enable and start

conversion

while (ADC10CTL1 & ADC10BUSY); // wait for conversion to

finish

ADC10CTL0 &= ~ADC10SC; // stop conversion

loadCellReading = ADC10MEM0 >> 2;

// CALIBRATED VALUE IS loadCellReading > 55.

if (loadCellReading > 55)

{

// turn on LED

P3OUT |= BIT5;

// change timer value

TB1CCR1 = 1500;

}

else

38

{

// turn off LED

P3OUT &= ~(BIT5);

// change timer value

TB1CCR1 = 500;

}

}

void transmit_UART_accel(void)

{

UCA0TXBUF = 255; // transmit 255 first

while ((UCA0IFG & UCTXIFG) == 0);

UCA0TXBUF = accelX;

while ((UCA0IFG & UCTXIFG) == 0);

UCA0TXBUF = accelY;

while ((UCA0IFG & UCTXIFG) == 0);

UCA0TXBUF = accelZ;

while ((UCA0IFG & UCTXIFG) == 0);

UCA0TXBUF = ADC_Result;

while ((UCA0IFG & UCTXIFG) == 0);

UCA0TXBUF = loadCellReading;

while ((UCA0IFG & UCTXIFG) == 0);

}

void configureCS(void)

{

// User Guide pg 80

CSCTL0 = 0xA500; // Write password to modify

CS registers

CSCTL1 &= ~DCORSEL; // Set DCORSEL to 0 for

DCOFSEL

CSCTL1 |= DCOFSEL_3; // Set DCOCLKto 8 MHz

CSCTL2 |= SELA_3 + SELS_3 + SELM_3; // ACLK, SMCLK, and MCLK

source is DCOCLK

CSCTL3 |= DIVA_0 + DIVS_3 + DIVM_0; // ACLK == SMCLK == MCLK ==

39

DCOCLK == 8 Mhz

}

void configureUART(void)

{

// Configure UC0

P2SEL0 &= ~(BIT1 + BIT0);

P2SEL1 |= BIT0 + BIT1;

// Configure UCA0

UCA0CTLW0 = UCSSEL0; // use ACLK as clock source, User Guide page 495

UCA0CTLW0 &= ~(UCPEN); // disable parity (default), User Guide page 495

// set baud rate to 9600 @ 8MHz, User Guide page 490

UCA0BRW = 52;

UCA0MCTLW = 0x4900 + UCOS16 + UCBRF0;

}

void powerADC(void)

{

P2OUT |= BIT7; // power accelerometer

P2DIR |= BIT7;

}

void configureADC(void)

{

// Configure ADC pins

P1OUT |= BIT4; // DOES P1OUT=1 DO ANYTHING FOR ADC?

P1SEL1 |= BIT4;

P1SEL0 |= BIT4;

// A12, A13, A14 SEL1=1, SEL0=1

P3SEL1 |= BIT0 + BIT1 + BIT2;

P3SEL0 |= BIT0 + BIT1 + BIT2;

// A0 SEL1=1, SEL0=1

P1SEL1 |= BIT0;

P1SEL0 |= BIT0;

// Configure rest of ADC10

40

ADC10CTL0 |= ADC10SHT_2 + ADC10ON; // ADC10ON, S&H=16 ADC clks

ADC10CTL1 |= ADC10SHP; // ADCCLK = MODOSC; sampling

timer

ADC10CTL2 |= ADC10RES; // 10-bit conversion results

ADC10MCTL0 |= ADC10INCH_12 + ADC10SREF_1; // ADC input select - start

with A12; Vref=1.5V I think

}

void configureTimer(void)

{

TA0CCR0 = 40000; // SMCLK ~ 1MHz default, so 1

timer increment is ~1us

TA0CTL = TASSEL_1 + MC_1 + ID_3; // TACLK = SMCLK, Up

mode

}

void configureMiscPins(void)

{

P1DIR |= BIT6;

P1SEL0 |= BIT6;

P1SEL1 &= ~(BIT6);

P3DIR |= BIT5;

P3SEL0 &= ~(BIT5);

P3SEL1 &= ~(BIT5);

TB1CCR0 = 20000; // Timer overflow value

TB1CCR1 = 500;

TB1CCTL1 = OUTMOD_7;

TB1CTL = TBSSEL_2 + MC_1; // SMCLK, UP mode

}

void configureSwitch(void)

{

// User Guide page 314

P4DIR &= ~(BIT0); // configure P4.0 as a digital input

P4REN |= BIT0; // enable internal pull-up/down resistors for switch

(for P4.0) (User Guide page 315)

P4OUT |= BIT0; // enable pull-up resistor for P4.0 (User Guide page

41

293)

P4IES &= ~(BIT0); // P4IFG flag is set with low-to-high transition

(User Guide page 316)

}

void enableInterrupts(void)

{

UCA0IE |= UCRXIE; // enable Receive Interrupt, User Guide page 502

TA0CCTL0 |= CCIE;

TA0CTL |= TAIE;

_EINT(); // global interrupt enable

P4IE = BIT0; // enable P4.0 interrupt

P4IFG &= ~(BIT0); // P4.0 IFG cleared

}

// Port 4 ISR

#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)

#pragma vector=PORT4_VECTOR

__interrupt void Port_4(void)

#elif defined(__GNUC__)

void __attribute__ ((interrupt(PORT4_VECTOR))) Port_4 (void)

#else

#error Compiler not supported!

#endif

{

P4IFG &= ~(BIT0); // clear P4.0 IFG

TB1CCR1 = 1500;

//CCR1 PWM Duty Cycle, Minimum is around 490-500, Maximum is at around

2600

TB1CCTL1 = OUTMOD_7; //CCR1 selection reset-set

TB1CTL = TBSSEL_2 | MC_1;

PJOUT ^= (BIT0); // LED toggle for debugging purposes

__bic_SR_register_on_exit(LPM4_bits); // exit LPM4

}

//ADC ISR

#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)

#pragma vector=TIMER0_A0_VECTOR

__interrupt void TA0_ISR(void)

42

#elif defined(__GNUC__)

void __attribute__ ((interrupt(TIMER0_A0_VECTOR))) TA0_ISR (void)

#else

#error Compiler not supported!

#endif

{

sample_ADC_accel();

transmit_UART_accel();

TA0CTL &= ~TAIFG;

}

